Recent startup, tech, AI, crypto learnings: “The user is never wrong” — Larry Page

Here’s the last one.

The average return on a token that paid for media space on DexScreener was -50% over only a 24 hour period.
Heuristic: If someone is paying cash to make sure I see a token, it’s so they can dump on me if I’m stupid enough to pay attention.

Close to 3/4 of startups work fully remote — in Alliance DAO

Aggregations of opinion polls in the 1960s have shown approval of the moon landing was consistently lower than disapproval. One poll of astronomers showed a majority against the mission. Even President Kennedy’s own head of Science Advisory Committee – Jerome Wiesner – opposed a manned mission, releasing a critical report on the notion.
Popular opposition isn’t something you often hear about regarding the Apollo program. It is conveniently missing from America’s collective memory, in lieu of a tale of collective patriotic triumph. A narrative that pleases Democrats as an example of successful big public programs and Republicans, as a triumph of the capitalist west against the communist east.
47% said it was worth it a decade later, in 1979 and it would take 20 years for amnesia to set it and this number to reach 77% in 1989.

There are just 21 million #bitcoin after all… How scarce that number. There are something like 59 million millionaires in the world (not enough for all of them to hold even 0.36 BTC).

Josh Kopelman: VC is anti network fx. The more you invest the harder to help them

5 levels to AGI according to OpenAI:
1. Chatbots
2. Reasoners
3. Agents
4. Innovators
5. Organizations

Level 3 is when the AI models begin to develop the ability to create content or perform actions without human input, or at least at the general direction of humans. Sam Altman, OpenAI CEO has previously hinted that GPT-5 might be an agent-based AI system.

@feketegy
This is exactly my thought too, think of programming mainframes in FORTRAN or COBOL in the 70s then PCs with ASM and C in the 90s and now LLMs plugs into many languages giving context to code bases where there were none before.

The above figures are clear: There is almost no persistence in CEO performance. The observed number of CEOs in each category is indistinguishable from what we would expect if the process were entirely random

44% of Bitcoin nodes are currently at the chain tip (fully synced with the network), with an additional 48% synced within 5 blocks of the chain tip, resulting in an enormous 92.8% are synced within 5 blocks. Only 7.2% of nodes are more than 5 blocks behind.

While we kept plodding on the “pure dual-core”, Intel, still smarting from the x64 defeat just slapped two 1x cores together, did some smart interconnects, & marketed it as “dual core”. Joke at AMD was that Intel’s marketing budget was > our R&D (true fact). Customers ate it up.

We did launch a “true” dual core, but nobody cared. By then Intel’s “fake” dual core already had AR/PR love. We then started working on a “true” quad core, but AGAIN, Intel just slapped 2 dual cores together & called it a quad-core. How did we miss that playbook?!

Today ‘summarise this document’ is AI, and you need a cloud LLM that costs $20/month, but tomorrow the OS will do that for free. ‘AI is whatever doesn’t work yet.’

power is becoming the main constraint. US electricity production has barely grown in a decade
– the US could solve this with natural gas. we have abundant supply and could build out capacity fast (my note: i wonder if bitcoin miners can help this?)

algorithmic secrets are worth 10x+ more compute. we’re leaking these constantly
– model weights will be critical to protect too. stealing these could let others instantly catch up

Looking at the spending behaviour of long-term holders, it can be seen that although the spent volume by these players constitutes only 4%-8% of the total volume, the profits realized from this spending typically account for 30%-40% of cumulative profits realized over bull markets.

Every Wednesday morning, Amazon’s executive team gets together and goes through 400-500 metrics that represents the current state of Amazon’s various businesses. The meeting lasts 60 minutes, except for when it’s the holiday shopping season, in which case they sit together for 90 minutes. Amazon’s leadership meets for the Weekly Business Review every week, without fail, even when the CEO or CFO isn’t present. They’ve been doing this since the early 2000s.

The Amazon-style WBR is designed to answer three questions:
What did our customers experience last week?
How did our business do last week?
Are we on track to hit targets?

It is easy to trade social capital for financial capital. But while you can cloak yourself in blue-chip designers all you like to impress your fellow financiers, it is extremely hard to trade financial capital for social capital.
You’ve seen this with every washed-up celebrity you know: when the coolest people become rich, even they can’t remain cool.

Larry Page: the user is never wrong

Empower your employees to build their social presence.Tap into those audiences for key company announcements.Build a culture around this so that net new employees can replenish the distribution when people inevitably leave.

Reason Google took so long to build cloud service is because it was lower margin than ads. No internal incentives. Same reason Amazon did it so quickly — higher margin than retail, “your margin is my opportunity”

All this to say that I’ve shifted my thoughts from “crypto and web3 will absorb tradfi” to “crypto and web3 serve as the base layer for AI”
Web3 isn’t our internet… it will belong to the machines

Laffont / Coatue:
$100T in CPU / PC infra investment
Believes all this will be replaced by $100T or more in GPU infra investment — but quantum will be very small part of it

China has commenced operation of the world’s first fourth-generation nuclear reactor, for which China asserts it developed some 90 percent of the technology.
Overall, analysts assess that China likely stands 10 to 15 years ahead of the United States in its ability to deploy fourth-generation nuclear reactors at scale

1) Many international individuals decide to start their company in the US (for example Snowflake was founded by 3 French people but it is an American company) as there are fewer regulations (Europe is very complicated given different states have different laws)
2) Source of Capital: the US has an amazing venture capital environment with investors who can act quickly and are willing to lose capital. In Europe, raising capital is much harder and lengthy

In 5 years, it’ll seem bizarre that we ever allowed anyone to email or text or call us AND the norm was to at least think about replying to them. Being reachable 24/7 by anyone and for anything will have been a blip in time, an absurd anomaly in the long arc of the hyperconnected digital age.

This gave those labels a lot of power over Spotify, but not all the labels, just three of them. Universal, Warner and Sony, the Big Three, control more than 70% of all music recordings, and more than 60% of all music compositions. These three companies are remarkably inbred. Their execs routine hop from one to the other, and they regularly cross-license samples and other rights to each other.

As we pored over the code, we found that, although there were a few human women on the site, more than 11 million interactions logged in the database were between human men and female bots. And the men had to pay for every single message they sent. For most of their millions of users, Ashley Madison affairs were entirely a fantasy built out of threadbare chatbot pick-up lines like “how r u?” or “whats up?”

Value of information is the amount of surprise — information theory

Crypto’s trends from the ICO boom; to NFT summer; to socialFi, to memecoining, show me that people like to do their own research, get some sense of market advantage and then buy in size.

This past week we had one of the most bullish signals for the crypto industries with the SEC dropping its case against ConsenSys, alongside an imminent launch of the $ETH ETF. Despite this, $ETH has drawn down 12% from local highs, with majority of altcoins down anywhere from 10-50% in the past week when I first expressed this view.

Crypto-native positioning is more relevant for alts, where liquidity and thinner and % of participant that is crypto-native is higher. For $BTC and $ETH, the consideration is more PvE in nature vs PvP, and my believe are these two are still flag-bearers for the market, especially given the decimation in TOTAL3.

Recent startup, tech, AI, crypto learnings: “some of the most successful consumer products started as what we’d now call tarpit ideas. Think Facebook, Instagram, DoorDash, Yelp”

Yet, some of the most successful consumer products started as what we’d now call tarpit ideas. Think Facebook, Instagram, DoorDash, Yelp. You could argue the problems they were tackling weren’t as broadly appealing at the time, but they weren’t first in their category either. There’s hindsight bias too — they were so wildly successful that we really can’t call them tarpit ideas anymore.

Crypto’s trends from the ICO boom; to NFT summer; to socialFi, to memecoining, show me that people like to do their own research, get some sense of market advantage and then buy in size.

The iPhone’s launch in 2007, was clearly disruptive to the existing “smartphone” market controlled by Blackberry and Palm Pilot. But a few years later, the iPhone went on to disrupt nearly every industry via the creation of the mobile interface. (And we predict that a similar delayed reaction is likely to happen in generative AI as well).

The end of 2023 marked an inflection point for the presence of memes on chain. Averaging about 9,000 new tokens per day from August to November of 2023, Solana now averages more than triple that at 28,000 per day. At its peak, it topped 100,000 new tokens per day using the 30-day moving average (670,000 outright).

One general rule of technical advancement is that it’s not necessarily the most feature rich variant of a new technology that reaches the tipping point and critical mass, or even the cheapest or most available: rather, it tends to be the easiest to use.

And as Sam Altman once said, every year we get closer to AGI everybody will gain +10 crazy points.

In any case, people overrate the importance of open-source as we get closer to AGI. Given cluster costs escalating to hundreds of billions, and key algorithmic secrets now being proprietary rather than published as they were a couple years ago, it’ll be 2-3 or so leading players, rather than some happy community of decentralized coders building AGI.

If the last couple waves of startups felt like 10x improvements, AI provides what feels like a 100x better experience than the incumbent substitute (humans!) by compressing what is almost always the significant effort of hiring and managing another person, into a near instant experience that will only get better over time. To do this at a small fraction of the cost of hiring/managing that human dramatically opens up limitless use cases and therefore dramatically expands the market. If people underestimated the size of Uber’s market initially, we’re all underestimating the size of many AI startups’ opportunity.

The analogy here is to Search, another service that requires astronomical investments in both technology and infrastructure; Apple has never built and will never need to build a competitive search engine, because it owns the devices on which search happens, and thus can charge Google for the privilege of making the best search engine the default on Apple devices. This is the advantage of owning the device layer, and it is such an advantageous position that Apple can derive billions of dollars of profit at essentially zero cost.

Coinbase: Last piece of big puzzle is international expansion. 17% of revenue today. We’ve picked 10 markets. “Go deep markets”

Though the team used to run a marketing agency, working with brands like Casper in order to fund MSCHF projects, they stopped taking on clients last year. Now, they pretty much do whatever they want.

“Everything is just, ‘How do we kind of make fun of what we’re observing?’” Mr. Whaley said. “Then we have as much fun with it as possible and see what happens.”

Ethereum is a vision with a business while Solana is a business with a vision.

On the one end there are the doomers. They have been obsessing over AGI for many years; I give them a lot of credit for their prescience. But their thinking has become ossified, untethered from the empirical realities of deep learning, their proposals naive and unworkable, and they fail to engage with the very real authoritarian threat.

In the early folds of the paper—for instance, when you’ve folded it seven times and it’s still less than an inch thick—it is hard to see how it is possible that on fold fifty, a thin piece of paper could reach the sun.

we get frustrated when our wifi won’t transfer in two seconds what would have taken twenty minutes in the year 2000.

The project that has done the most on the former is perhaps Worldcoin, of which I analyze an earlier version (among other protocols) at length here. Worldcoin uses AI models extensively at protocol level, to (i) convert iris scans into short “iris codes” that are easy to compare for similarity, and (ii) verify that the thing it’s scanning is actually a human being. The main defense that Worldcoin is relying on is the fact that it’s not letting anyone simply call into the AI model: rather, it’s using trusted hardware to ensure that the model only accepts inputs digitally signed by the orb’s camera.

Modularization incurs costs in the design and experience of using products that cannot be overcome, yet cannot be measured. Business buyers — and the analysts who study them — simply ignore them, but consumers don’t. Some consumers inherently know and value quality, look-and-feel, and attention to detail, and are willing to pay a premium that far exceeds the financial costs of being vertically integrated.

When hype hit Snapchat, the product and growth loops had been maturing for months without any distortion from hype.

Rather, a useful way to think about generative AI models is that they are extremely good at telling you what a good answer to a question like that would probably look like. There are some use-cases where ‘looks like a good answer’ is exactly what you want, and there are some where ‘roughly right’ is ‘precisely wrong’.

The number of Chinese websites is shrinking and posts are being removed and censored, stoking fears about what happens when history is erased. China’s internet had 3.9M websites in 2023, down ~27% from 2017; Chinese-language websites were 1.3% of the global total, down 70% from 4.3% in 2013

https://longform.asmartbear.com/extreme-questions/
-If you were forced to increase your prices by 10x, what would you have to do to justify it?
-If you were never allowed to provide tech support, in any form, what would have to change?
-What would be the most fun thing to build? When we work on things that are fun, we work better and harder, yet are happy to do it.
-If our biggest competitor copied every feature we have, how would we still win?
-What if our only goal were to create the most good in the world, personally for our customers?

https://www.workingtheorys.com/p/software-creator

They’ll make simple software fast and at high frequency. They’ll have small teams (or no team) and engage directly with their users. Like content creators, there’ll be many kinds of software creators in many mediums. There will be short-form software creators and long-form software creators. There will be educational software creators, entertainment software creators, and lifestyle software creators.

We’ll see a lot more software as art, software as a game, software as an experience — not just software as a never-ending utility.

More software will be niche, private, personal, and local – and this will be economically rational. And just like we subscribe to our favorite content creators, we’ll subscribe to our favorite software creators too.

Late on the night of June 2nd, the Mianbi Intelligence team confirmed that the Stanford large model project Llama3-V, like MiniCPM, could recognize the “Tsinghua Simple” ancient Warring States script, “not only getting it exactly right, but also making the exact same mistakes.” This ancient script data was manually annotated by the research team after months of scanning word by word from the Tsinghua Simple, and was not publicly available, confirming the fact of plagiarism.

As an investor, the AI opportunity is obviously colossal and on a par with the invention of the internet or railroads in terms of disruption and value creation. But I think it’s likely to be “too successful” in terms of disrupting society. I believe that the effect of AI on the workforce will lead to an empowering of socialist, anti-capital dynamics in the west. So while the move is to allocate aggressively, you have to consider the reprisals to come.

Because the best possible way to find product-market fit is to define your own market.

Soon, some company will make smart glasses that sit in front of our eyes all day. We will go from 50% attention on screens to ~90%+ That’s the moment in time when the metaverse starts. Because at that moment, our virtual life will become more important than our real life.

11/ Crypto users show high present bias (~0.4) and notably low discount factor indicating a tendency toward impatience and immediate gratification

“Without a doubt, memes are becoming a universal language. Memes are shared on every social platform: Facebook, X, Instagram, TikTok, Reddit, family group chats, company Slack channels, marketing messages, celebrity feuds, etc. But if you google the market size of the meme industry, the projected value is expected to be $6.1B in 2025. This makes no sense when one meme coin (like $PEPE) has nearly that value as a market cap. Given how memes drive culture, politics, and entertainment, I’d be so bold to say that the true market size is at least 100x in size.”

one of the few people who recognized, early, the potential dangers of unaligned AGI, Musk, has switched teams, flipping from calling for a pause to going all in on—and wildly overhyping—a technology that remains exactly as incorrigible as it ever was.

Collectively, founders typically own 8–12% of max token supply with individual founders owning between 2.5–7.5% with 4–6% being most common.

Open-source will have a home wherever smaller, less capable, and configurable models are needed – enterprise workloads, for example – but the bulk of the value creation and capture in AI will happen using frontier capabilities. The impulse to release open-source models makes sense as a free marketing strategy and a path to commoditize your complements. But open-source model providers will lose the capital expenditure war as open-source ROI continues to decline.

Cailliau told Motherboard that to make this bot, he first created a large language model framework that was customized to reflect his girlfriend, Sacha’s, personality. Cailliau said he used Google’s chatbot Bard to help him describe her personality. Then, he used ElevenLabs, an AI text-to-speech software, to mimic his girlfriend’s voice. He also added a selfie tool into the code that was connected to the text-to-image model Stable Diffusion that would generate images of her during the conversation. Finally, Cailliau connected it all to Telegram using an app called Steamship, which is also the company he works at.

Software is expensive to create. You have to pay people to create it, maintain it, and distribute it. Because software is expensive to create, it has to make money. And we pay for it–software licenses, SaaS, per seat pricing, etc. Software margins have historically been an architectural envy–90+% margins and zero marginal cost of distribution.

“One of the fundamental rules of marketing is that “a confused mind always says no.”
“People won’t care about any of the success you’ve had, and they won’t follow you or your advice until they know that you’ve been where they are now.”
“If you’re neutral, no one will hate you, but no one will know who you are either.”

I still remember the days when “tokenomics” seemed cheesy af. It felt too academic, like Wall Street bros trying to enter the crypto clown arena in their suits and slacks. Now, a few short years later, tokenomics are widespread and heavily scrutinized. Attentionomics feels like a new appendage in the tokenomic arsenal.

Have said before that I believe the biggest memecoins will morph into unrecognizable monsters with chains, dexes, branded apps and more (imagine Pepechain). They will iteratively add utility (just as we saw last cycle w NFTs).

Open-source models have no feedback loop between production usage and model training, so they foot the bill for all incremental training data, whereas closed-source models drive compounding value with data from incremental usage.
If Meta differentiates their model based on their social graph or user feedback, they’ll want to capture that value via their closed products, and not share it with the world.

Cypherpunks participate in core Ethereum research and development, and write privacy software
Regens do Gitcoin grants rounds, retroactive public goods funding, and various other non-financial applications
Degens trade memecoins and NFTs and play games

Here was the last post on AI, crypto, startup, tech learnings :)

Highway to the Banana Zone

I think this cycle (2024 and 20205) could be the last great crypto bull run. A bull run that surprises everyone, with price action more like 2017 than 2020, and a prolonged and absolutely silly banana zone (to borrow Raoul’s term).

I really like this thread from Yano: https://x.com/jasonyanowitz/status/1762878540280946737?s=46

Using his framework, we’re now between stage 2 (excitement) and 3 (euphoria). We’re seeing many signs of euphoria already: break ATHs; $500M VC funds; athletes & artists. Stage 3 will accelerate as soon as bitcoin re-captures its ATH (~$73K) and I believe we’ll fly — almost teleport — directly to stage 4, which in Yano’s words:

This stage could also be described as Insanity. Nothing makes sense anymore…A crypto person buys a sports team…Justin Bieber joins a decentralized social platform.

Another good framing from Qiao:

top signs of the last cycle, eg celebrities endorsing crypto, r too obvious to work again this cycle
think 10x bigger
this cycle itll be something like mega pension funds or sovereign states yolo into btc

Source: https://x.com/QwQiao/status/1795545263727120778

Hard agree. El Salvador is showing impressive returns (financial and reputational) to their BTC adoption strategy. Nation states are investing in BTC mining. Sovereign funds are rumored to be quietly accumulating (Saudi Arabia, Norway, Kuwait).

The game theory is unfurling, and increasingly unavoidable as government debt continues to rise and fiat currencies continue to subsequently weaken.

Look at gold’s current run. Look at G7 long term bond yields.

And finally from Gwarty:

I am horrified to think about what the top signals are going to be this cycle

Source: https://x.com/GwartyGwart/status/1795896460602409076

Some more signs the highway to the banana zone is coming, and is gonna be quite a ride:

  • The US presidential race hasn’t begun in earnest, yet crypto is already a meaningful wedge issue (SAB121, Trump’s endorsement, FIT21, ETH ETF)
  • Fed rate cuts have yet to start (expectations for the first cut in late Q3/Q4)
  • Mainstream has started buying and announcing bags in earnest (Bitcoin ETF 13F filings, Fink and Blackrock heavily leaning in, Chamath on All-In)
  • We haven’t even seen this cycle’s SBF, Do Kwon, Alex Mashinsky… (or have we)

And how will we know we’re in the zone? Some wild signals:

Last cycle darlings get a rescue pump (Doge passes ATH at $0.68 / $100B market cap, on rumors of potential Dogecoin ETF; NFT pumps including yes, even those poor Apes)

Crypto influencers become nominal billionaires (this cycle’s main characters like Ansem… puncher’s chance to Andrew Tate…). Probably a non-crypto influencer launches a billion dollar coin… Iggy may get lucky if she keeps grinding and memeing (just watch the fomo that will result)

Bitcoin briefly top ticks gold’s market cap (a hand wavy $10T which implies a per bitcoin price of ~$500K USD)

Ethereum briefly top ticks Bitcoin’s market cap (if this happens, it would happen AFTER bitcoin top ticks gold, then crashes, then ETH has an epic run)

Punks surpass $1M (~10x today’s prices)

Raoul Pal is anointed Wall Street’s crypto pied piper, briefly obtaining Bill Ackman and Stanley Druckenmiller levels of influence (think Novogratz but 10x bigger, on magazine covers, TV mainstay, all of that)

A nation-state on the level of UAE or Brazil or Switzerland publicly announces multi-B crypto holdings (could be Bitcoin, could be Ethereum, could be a surprise like Ripple hah) and a set of policies to attract crypto natives and encourage local crypto adoption

The AI hype becomes completely subsumed by crypto; “AI-crypto” projects and narratives dominate non-crypto AI; OpenAI / Sama join the party with some superficially promising but substantively meaningless announcement

Massive M&A in crypto space from miners to exchanges to protocols (Robinhood’s $200M purchase of Bitstamp is an appetizer)

One of the FAANG/MAMAA tech giants becomes first to stake brand and reputation into crypto (my bet is on Meta because of 1, their recent support for open source AI, 2 their failed attempt with Libra, and 3 Zuck’s ambition and continued ability to reinvent)

A meaningful number of provincial / local governments start to buy regulated crypto products; US states are heavily indebted so I’d expect players like Texas, or Hawaii, or maybe at municipal / county level to participate

Where do you think I’m wrong? What am I missing? I plan to add more stuff here as we get deeper into the cycle.

Recent startup, tech, AI, crypto learnings: Industrial Revolution freed people from using muscles, AI will free people from using brain

“Learning always wins,” said Jones. “The history of AI reflects the reality that it always works better to have a model learn something for itself rather than have a human hand-engineer it. The deep learning revolution itself was an example of this, as we went from building feature detectors by hand to letting neural networks learn their own features. This is going to be a core philosophy for us at Sakana AI, and we will draw on ideas from nature including evolution to explore this space.”

Catastrophic forgetting: a scary name for when a model forgets some of its base knowledge learned in pre-training during fine-tuning. If you run into this, there are a few ways to mitigate it.

Launch memecoin (no roadmap, just for fun) → Raise Capital → Forming a tribalistic community early on → build apps/infrastructure → continually adding utility to the memecoin without making false promises or providing roadmaps

One developer already created a Slack workspace where he and his friend hang out with a group of bots that have different personalities, interests, and skills.

In reality, Navboost has a specific module entirely focused on click signals.
The summary of that module defines it as “click and impression signals for Craps,” one of the ranking systems. As we see below, bad clicks, good clicks, last longest clicks, unsquashed clicks, and unsquashed last longest clicks are all considered as metrics. According to Google’s “Scoring local search results based on location prominence” patent, “Squashing is a function that prevents one large signal from dominating the others.” In other words, the systems are normalizing the click data to ensure there is no runaway manipulation based on the click signal.

Industrial Revolution largely freed people from using brawn
AI will largely free people from using brain

Unfortunately there are absolutely no solid predictions we can do about this stage. At the end of the day the startup just has to be lucky enough to start close enough and navigate optimally enough to hit its first discovery before company disintegrates from lack of funding or team morale. The process can be as fast as few months or as long as a decade.

Six of the eight web companion products bill themselves as “uncensored,” which means users can have conversations or interactions with them that may be restricted on platforms like ChatGPT. Users largely access these products via mobile web, as opposed to desktop — though almost none of them offer apps. On average, 75 percent of traffic to the uncensored companion tools on our web list comes from mobile.

🍰 Only 4 out of 70+ projects I ever did made money and grew📉 >95% of everything I ever did failed📈 My hit rate is only about ~5%🚀 So…ship more — @levelsio (@levelsio)

Vitalik said L3 good for customization (L2 for scaling); L3 good for specific kinds of scaling

It’s inspiring to know at any moment in time there is an infinite number of true statements for new startups to discover and further expand our collective system. Gödel’s theorem is not really about our limits: it’s about possibilities always waiting to be discovered. The process is certainly hard and alien to us.

No nation has ever become the major power without a clear lead in technology, both civilian and military. From the Roman legions, to the naval powers of Portugal, Spain and Great Britain, to Germany in World War I and the US post-World War II, great power status was achieved by those nations that were able to harness their technological advantage for holistic development of their civilian and military capabilities.

This holds at a higher level of conceptual abstraction: looking near a feature related to the concept of “inner conflict”, we find features related to relationship breakups, conflicting allegiances, logical inconsistencies, as well as the phrase “catch-22”. This shows that the internal organization of concepts in the AI model corresponds, at least somewhat, to our human notions of similarity. This might be the origin of Claude’s excellent ability to make analogies and metaphors.

Language differences mean that Chinese firms really are in the hot seat for developing domestic AI products. OpenAi’s most recent version of ChatGPT, GPT-4o, has real issues in China. MIT Technology Review reported that its Chinese token-training data is polluted by spam and porn websites.

Metaplanet becomes Japan’s top-performing stock this week, hitting a +50% daily gain limit for two consecutive days. The company plans to increase its authorized shares by 300% to acquire more BTC for its reserves.

Community is made of people, culture is made up of shared memes, community can be transient, culture is much more persistent, “community” can be formed with a free airdrop, culture can only be formed with a sustained commitment to creating a common story.

Every memecoin is an exquisitely precise ad, a self-measuring barometer of attention: the price jumps if people talk about the memecoin and drops if they don’t

McLuhan believed transformative new technologies, like the stirrup or printing press, extend a man’s abilities to the point where the current social structure must change to accommodate it. Just as the car created the Interstate Highway System, the suburb, and the oil industry, so the stirrup helped create a specialized weapon system (knights) that required land and pasture to support it and provide for training and material.

Wall Street is not going to stand idly by while Tether makes more money than Goldman Sachs.

Terminator: In three years, Cyberdyne will become the largest supplier of military computer systems. All stealth bombers are upgraded with Cyberdyne computers, becoming fully unmanned. Afterwards, they fly with a perfect operational record. The Skynet funding bill is passed. The system goes online on August 4th, 1997. Human decisions are removed from strategic defense. Skynet begins to learn at a geometric rate. It becomes self-aware 2:14 AM, Eastern time, August 29th. In a panic, they try to pull the plug.

“Hyperscalers”, which are all looking to create a full stack with an AI model powerhouse at the top and hardware that powers it underneath: OpenAI(models)+Microsoft(compute), Anthropic(models)+AWS(compute), Google (both) and Meta (increasingly both via doubling down on own data center buildout).

Stability AI founder recently stepping down in order to start “decentralizing” his company is one of the first public hints at that. He had previously made no secret of his plans to launch a token in public appearances, but only after the successful completion of the company’s IPO – which sort of gives out the real motives behind the anticipated move.

An additional limitation of transformer models is their inability to learn continuously. Today’s transformer models have static parameters. When a model is trained, its weights (the strength of the connections between its neurons) are set; these weights do not update based on new information that the model encounters as it is deployed in the world.

All this equipment and processes consume large amounts of energy. A large fab might demand 100 megawatts of energy, or 10% of the capacity of a large nuclear reactor. Most of this energy is used by the process tools, the HVAC system and other heating/cooling systems. The demands for power and water are severe enough that some fabs have been canceled or relocated when local utilities can’t guarantee supply.

If we considered things in “capital cost per component” terms, and considered transistors as individual components, semiconductor fabs are actually probably among the cheapest manufacturing facilities.

Build for where models will be in 1-2 years, not where they are today. Bake the challenges of inference at scale into your roadmap. And don’t just think in terms of prompting one mega model and getting an answer back. Plan for the iterative systems design, engineering, and monitoring work needed to make your AI product the proverbial “10x better” than existing alternatives.

Ethereum’s ICO returns were 1.5x higher than available on market.Solana’s seed round returns were 10x higher than those available on market. OP’s seed round returns were 30x higher than those available on market.

Across every major ETH NFT project, more than 3/4 of all NFTs haven’t traded once in 2024.
-95% of punks
-93% of world of women
-87% of BAYC
-87% of MFers
are just sitting in wallets through this year’s moves.

We have to start by understanding the really important parts and building that core functionality first, then building additional features around that core. When you’re building consumer products, getting serious leverage in the marketplace (distribution) is the most important first order goal, so you need to accomplish this as quickly as possible and then shift gears to build second generation features.

Every VC fund with a consumer investing team is one foot in, one foot out of consumer. Even when startups hit the desired milestones & metrics, investors are still unclear which to bet on because the past decade of consumer investing hasn’t yielded many big wins, barriers to entry are low, and AI makes the future of human-tech interaction uncertain.

Angel investing, especially with small checks, is only good for two things: 1) getting into contractual friendships with founders you respect 2) building a track record for being a full-time venture capitalist (raising a fund or joining one).

Mustafa Suleyman has argued that the real Turing Test that matters is whether a given AI can go off and earn $100,000 for you on the internet. I would argue the test that’s more relevant — and consequential — is whether an AI can empty your inbox.

From dataset Google doc memo:
“Few know how to train efficient models” meant “Few know how to craft informative datasets.”

all the consumer graphics cards on the Internet could not compete with a mere thousand GPUs in a supercomputer.

Data cleaning, data curation, and data synthesis do not have this problem: dataset creation is a series of (mostly) parallel operations. This makes dataset creation perfectly suited to distributed computation, as one finds on AI blockchains. We can build good datasets together.

Web2 sports betting losing market share to memecoins

Fabs must limit vibrations to several orders of magnitude below the threshold of perception, while simultaneously absorbing 100 times the mechanical energy and 50 times the air flow as a conventional building.

An interesting phenomenon evident blockchain ecosystems is that the networks with the stickiest communities are the ones where a broad base of developers and users had an opportunity to benefit financially from their participation. Think Ethereum and Solana, which have two of the strongest developer communities: the native tokens were publicly available at a much lower price to the current value. In contrast, ecosystems where network tokens launch at a highly efficient market price tend to struggle to retain a passionate community of developers and users, to the long-term detriment of the ecosystem.

Bitcoin surpasses 1 billion confirmed transactions, averaging over 178,000 transactions per day since its launch in 2009.

We are relatively cheaper and don’t bill by the hour. We get more done. We hire and fire firms. CEOs trust _us_.
As a result, in-house lawyers have grown 7.5x times the rate of other kinds of lawyers the last 25 years. The role of “product counsel” boomed, just like the role of product manager in this time.
Today Google employs 828 “product counsel.” That’s more than only the biggest law firms.

Number one predictor of job retention is whether they have a friend at work

We don’t sell saddles essay
-The best — maybe the only? — real, direct measure of “innovation” is change in human behaviour. In fact, it is useful to take this way of thinking as definitional: innovation is the sum of change across the whole system, not a thing which causes a change in how people behave. No small innovation ever caused a large shift in how people spend their time and no large one has ever failed to do so.
-Because the best possible way to find product-market fit is to define your own market.

Transformers’ fundamental innovation, made possible by the attention mechanism, is to make language processing parallelized, meaning that all the words in a given body of text are analyzed at the same time rather than in sequence.

I’ve been making chatbots since the days of AI Dungeon, and have seen the cycle multiple times. A new site appears with low censorship and free content generation. It grows a user base, starts introducing more censorship, raises prices, and before long it becomes unusable and people move on to the next one. Poe has been around for longer that most and I’m only seeing improvements on it. Plus it’s operated by Quora, which I think will give it added sustainability.

Friendtech is uniswap for social tokens

Steve Jobs figured out that “you have to work hard to get your thinking clean to make it simple. – Taleb

I eventually think these open-source LLMs will beat the closed ones, since there are more people training and feeding data to the model for the shared benefit.
Especially because these open source models can be 10 times cheaper than GPT-3 or even 20 times cheaper than GPT-4 when running on Hugging Face or locally even free, just pay electricity and GPU

In a 1985 interview Wozniak posited: “The home computer may be going the way of video games, which are a dying fad” – alluding to the 1983 crash in the video game market. Wozniak continued:
“for most personal tasks, such as balancing a check book, consulting airline schedules, writing a modest number of letters, paper works just as well as a computer, and costs less.”

He seemed well aware of the heretical nature of his statements, telling a reporter: “Nobody at Apple is going to like hearing this, but as a general device for everyone, computers have been oversold”and that “Steve Jobs is going to kill me when he hears that.”

Bonus (Reality Check): What Are The Odds You Get Acquired Within 5 Years for a Good Price? Around 1%-1.5% by Jason Lemkin
Data on 3,067 startups founded in 2018. The takeaway: It’s the second 5 years where the real value starts to compound. Startups are a long game

The subset of parameters is chosen according to which parameters have the largest (approximate) Fisher information, which captures how much changing a given parameter will affect the model’s output. We demonstrate that our approach makes it possible to update a small fraction (as few as 0.5%) of the model’s parameters while still attaining similar performance to training all parameters.

AI learnings 1: AI = infinite interns

All below are copy-pasted from original sources, all mistakes mine! :))

I eventually think these open-source LLMs will beat the closed ones, since there are more people training and feeding data to the model for the shared benefit.
Especially because these open source models can be 10 times cheaper than GPT-3 or even 20 times cheaper than GPT-4 when running on Hugging Face or locally even free, just pay electricity and GPU

We extensively used prompt engineering with GPT-3.5 but later discovered that GPT-4 was so proficient that much of the prompt engineering proved unnecessary. In essence, the better the model, the less you need prompt engineering or even fine-tuning on specific data.

Harder benchmarks emerge. AI models have reached performance saturation on established benchmarks such as ImageNet, SQuAD, and SuperGLUE, prompting researchers to develop more challenging ones. In 2023, several challenging new benchmarks emerged, including SWE-bench for coding, HEIM for image generation, MMMU for general reasoning, MoCa for moral reasoning, AgentBench for agent-based behavior, and HaluEval for hallucinations.

The subset of parameters is chosen according to which parameters have the largest (approximate) Fisher information, which captures how much changing a given parameter will affect the model’s output. We demonstrate that our approach makes it possible to update a small fraction (as few as 0.5%) of the model’s parameters while still attaining similar performance to training all parameters.

If you’re training a LLM with the goal of deploying it to users, you should prefer training a smaller model well into the diminishing returns part of the loss curve.


When people talk about training a Chinchilla-optimal model, this is what they mean: training a model that matches their estimates for optimality. They estimated the optimal model size for a given compute budget, and the optimal number of training tokens for a given compute budget.

However, when we talk about “optimal” here, what is meant is “what is the cheapest way to obtain a given loss level, in FLOPS.” In practice though, we don’t care about the answer! This is exactly the answer you care about if you’re a researcher at DeepMind/FAIR/AWS who is training a model with the goal of reaching the new SOTA so you can publish a paper and get promoted. If you’re training a model with the goal of actually deploying it, the training cost is going to be dominated by the inference cost. This has two implications:

1) there is a strong incentive to train smaller models which fit on single GPUs

2) we’re fine trading off training time efficiency for inference time efficiency (probably to a ridiculous extent).

Chinchilla implicitly assumes that the majority of the total cost of ownership (TCO) for a LLM is the training cost. In practice, this is only the case if you’re a researcher at a research lab who doesn’t support products (e.g. FAIR/Google Brain/DeepMind/MSR). For almost everyone else, the amount of resources spent on inference will dwarf the amount of resources spent during training.

There is no cost/time effective way to do useful online-training on a highly distributed architecture of commodity hardware. This would require a big breakthrough that I’m not aware of yet. It’s why FANG spends more money than all the liquidity in crypto to acquire expensive hardware, network it, maintain data centers, etc

A reward model is subsequently developed to predict these human-given scores, guiding reinforcement learning to optimize the AI model’s outputs for more favorable human feedback. RLHF thus represents a sophisticated phase in AI training, aimed at aligning model behavior more closely with human expectations and making it more effective in complex decision-making scenarios

Lesson 3: improving the latency with streaming API and showing users variable-speed typed words is actually a big UX innovation with ChatGPT

Lesson 6: vector databases, and RAG/embeddings are mostly useless for us mere mortals
I tried. I really did. But every time I thought I had a killer use case for RAG / embeddings, I was confounded.
I think vector databases / RAG are really meant for Search. And only search. Not search as in “oh – retrieving chunks is kind of like search, so it’ll work!”, real google-and-bing search

There are fundamental economic reasons for that: between GPT-3 and GPT-3.5, I thought we might be in a scenario where the models were getting hyper-linear improvement with training: train it 2x as hard, it gets 2.2x better.
But that’s not the case, apparently. Instead, what we’re seeing is logarithmic. And in fact, token speed and cost per token is growing exponentially for incremental improvements

Bittensor is still in its infancy. The network boasts a dedicated, almost cult-like community, yet the overall number of participants remains modest – around 50,000+ active accounts. The most bustling subnet, SN1, dedicated to text generation, has about 40 active validators and over 990 miners

Mark Zuckerberg, CEO of Meta, remarks that after they built machine learning algorithms to detect obvious offenders like pornography and gore, their problems evolved into “a much more complicated set of philosophical rather than technical questions.”

AI is – at its core, a philosophy of abundance rather than an embrace of scarcity.

AI thrives within blockchain systems, fundamentally because the rules of the crypto economy are explicitly defined, and the system allows for permissionlessness. Operating under clear guidelines significantly reduces the risks tied to AI’s inherent stochasticity. For example, AI’s dominance over humans in chess and video games stems from the fact that these environments are closed sandboxes with straightforward rules. Conversely, advancements in autonomous driving have been more gradual. The open-world challenges are more complex, and our tolerance for AI’s unpredictable problem-solving in such scenarios is markedly lower

generative model outputs may ultimately be best evaluated by end users in a free market. In fact, there are existing tools available for end users to compare model outputs side-by-side as well as benchmarking companies that do the same. A cursory understanding of the difficulty with generative AI benchmarking can be seen in the variety of open LLM benchmarks that are constantly growing and include MMLU, HellaSwag, TriviaQA, BoolQ, and more – each testing different use cases such as common sense reasoning, academic topics, and various question formats.

This is not getting smaller. There’s not gonna be less money in generative AI next year, it’s a very unique set of circumstances, AI + crypto is not going to have less capital in a year or two. – Emad re: AI+crypto

Benefits of AI on blockchain
CODSPA = composability, ownership, discovery, safety, payments, alignment

The basis of many-shot jailbreaking is to include a faux dialogue between a human and an AI assistant within a single prompt for the LLM. That faux dialogue portrays the AI Assistant readily answering potentially harmful queries from a User. At the end of the dialogue, one adds a final target query to which one wants the answer.

At the moment when you look at a lot of data rooms for AI products, you’ll see a TON of growth — amazing hockey sticks going 0 to $1M and beyond — but also very high churn rates

Vector search is at the foundation for retrieval augmented generation (RAG) architectures because it provides the ability to glean semantic value from the datasets we have and more importantly continually add additional context to those datasets augmenting the outputs to be more and more relevant.

From Coinbase report on AI+Crypto

Nvidia’s February 2024 earnings call revealed that approximately 40% of their business is inferencing, and Sataya Nadella made similar remarks in the Microsoft earnings call a month prior in January, noting that “most” of their Azure AI usage was for inferencing

The often touted blanket remedy that “decentralization fixes [insert problem]” as a foregone conclusion is, in our view, premature for such a rapidly innovating field. It is also preemptively solving for a centralization problem that may not necessarily exist. The reality is that the AI industry already has a lot of decentralization in both technology and business verticals through competition between many different companies and open source projects

AI = infinite interns

We struggle to align humans — how do we align AI?

One of the most important trends in the AI sector (relevant to crypto-AI products), in our view, is the continued culture around open sourcing models. More than 530,000 models are publicly available on Hugging Face (a platform for collaboration in the AI community) for researchers and users to operate and fine-tune. Hugging Face’s role in AI collaboration is not dissimilar to relying on Github for code hosting or Discord for community management (both of which are used widely in crypto

We estimate the market share in 2023 was 80%–90% closed source, with the majority of share going to OpenAI. However, 46% of survey respondents mentioned that they prefer or strongly prefer open source models going into 2024

Enterprises still aren’t comfortable sharing their proprietary data with closed-source model providers out of regulatory or data security concerns—and unsurprisingly, companies whose IP is central to their business model are especially conservative. While some leaders addressed this concern by hosting open source models themselves, others noted that they were prioritizing models with virtual private cloud (VPC) integrations.

That’s because 2 primary concerns about genAI still loom large in the enterprise: 1) potential issues with hallucination and safety, and 2) public relations issues with deploying genAI, particularly into sensitive consumer sectors (e.g., healthcare and financial services)